Correlation of EGFR or KRAS mutation status with 18F-FDG uptake on PET-CT scan in lung adenocarcinoma
نویسندگان
چکیده
BACKGROUND 18F-fluoro-2-deoxy-glucose (18F-FDG) positron emission tomography (PET) is a functional imaging modality based on glucose metabolism. The correlation between EGFR or KRAS mutation status and the standardized uptake value (SUV) of 18F-FDG PET scanning has not been fully elucidated. METHODS Correlations between EGFR or KRAS mutation status and clinicopathological factors including SUVmax were statistically analyzed in 734 surgically resected lung adenocarcinoma patients. Molecular causal relationships between EGFR or KRAS mutation status and glucose metabolism were then elucidated in 62 lung adenocarcinomas using cap analysis of gene expression (CAGE), a method to determine and quantify the transcription initiation activities of mRNA across the genome. RESULTS EGFR and KRAS mutations were detected in 334 (46%) and 83 (11%) of the 734 lung adenocarcinomas, respectively. The remaining 317 (43%) patients had wild-type tumors for both genes. EGFR mutations were more frequent in tumors with lower SUVmax. In contrast, no relationship was noted between KRAS mutation status and SUVmax. CAGE revealed that 4 genes associated with glucose metabolism (GPI, G6PD, PKM2, and GAPDH) and 5 associated with the cell cycle (ANLN, PTTG1, CIT, KPNA2, and CDC25A) were positively correlated with SUVmax, although expression levels were lower in EGFR-mutated than in wild-type tumors. No similar relationships were noted with KRAS mutations. CONCLUSIONS EGFR-mutated adenocarcinomas are biologically indolent with potentially lower levels of glucose metabolism than wild-type tumors. Several genes associated with glucose metabolism and the cell cycle were specifically down-regulated in EGFR-mutated adenocarcinomas.
منابع مشابه
Prognostic Value of Baseline 18F-FDG PET/CT Functional Parameters in Patients with Advanced Lung Adenocarcinoma Stratified by EGFR Mutation Status
The study objective was to retrospectively analyze the metabolic variables derived from 18 F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) as predictors of progression-free survival (PFS) and overall survival (OS) in advanced lung adenocarcinoma stratified by epidermal growth factor receptor (EGFR) mutation status. A total of 176 patients (91, EGFR mutat...
متن کاملTriage of Limited Versus Extensive Disease on 18F-FDG PET/CT Scan in Small Cell lung Cancer
Objective(s): Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma, which accounts for 10-15% of pulmonary cancers and exhibits early metastatic spread. This study aimed to determine the added value of 18F-FDG PET/CT imaging in tumor, node, and metastasis (TNM) staging of SCLC, compared to the conventional computed tomography (CT) scan and its potential role as a prognosticat...
متن کاملPrediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics
This study investigated the relationship between epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in non-small-cell lung cancer (NSCLC) and quantitative FDG-PET/CT parameters including tumor heterogeneity. 131 patients with NSCLC underwent staging FDG-PET/CT followed by tumor resection and histopathological analysis that included testing fo...
متن کاملAssociations Between Somatic Mutations and Metabolic Imaging Phenotypes in Non-Small Cell Lung Cancer.
PET-based radiomics have been used to noninvasively quantify the metabolic tumor phenotypes; however, little is known about the relationship between these phenotypes and underlying somatic mutations. This study assessed the association and predictive power of 18F-FDG PET-based radiomic features for somatic mutations in non-small cell lung cancer patients. Methods: Three hundred forty-eight non-...
متن کاملThe Efficiency of Respiratory-gated 18F-FDG PET/CT in Lung Adenocarcinoma: Amplitude-gating Versus Phase-gating Methods
Objective(s): In positron emission tomography (PET) studies, thoracic movement under free-breathing conditions is a cause of image degradation. Respiratory gating (RG) is commonly used to solve this problem. Two different methods, i.e., phase-gating (PG) and amplitude-gating (AG) PET, are available for respiratory gating. It is important to know the strengths and weaknesses of both methods when...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017